In Situ X-ray and Electrochemical Studies of Solid Oxide Fuel Cell / Electrolyzer Oxygen Electrodes
نویسندگان
چکیده
The governing reaction mechanisms, and the electrode material compositions and structures, that controls the efficiency of the solid oxide fuel cells (SOFC) and solid oxide electrolysis cells (SOEC) need to be identified and well-understood for significant technological improvements. Our study on the oxygen electrodes focuses on specifically the effect of electrode crystal structure and morphology on its electrochemical performance, and the evolution of the electronic and structural properties of the electrodes while under electrochemical conditions and high temperature. We found through electrochemical impedance spectroscopy experiments that the different crystal orientations in a given oxygen electrode material, for example La0.8Sr0.2MnO3+d (LSM), can show different initial performance, dissimilar processes governing the oxygen reaction mechanism, and different electrochemical activation behavior under DC bias at a given temperature in air. Our in-situ x-ray and electrochemical measurements at the Advanced Photon Source have identified the chemical states of the main components of the doped lanthanum manganite electrodes. We found that the bias and time dependent changes in the concentration and in the electronic state of the La (the A-site element of the perovskite) occurring only at the top air-electrode film interface can be responsible from the electrochemical improvement of the electrode under DC current. Our observation related to the La chemical state change is unexpected and probably unique to the electrochemical current-conditioning of the oxygen electrodes.
منابع مشابه
One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells
We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...
متن کاملIntroducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...
متن کاملIntroducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells
Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملA new approach to microstructure optimization of solid oxide fuel cell electrodes
Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...
متن کامل